- 2017/3/1 9:33:05
- 类型:原创
- 来源:电脑报
- 报纸编辑:电脑报
- 作者:
深度学习登场
重大突破出现了。2006年7月28日,欣顿和学生题为《用神经网络降低数据维数》的论文在美国权威的《Science》杂志发表,这篇论文被认为是深度学习领域开创性论文。论文中介绍了神经网络的一些新思想和新方法,引起AI和人工神经网络界的关注。而他们和经费支持者CIFAR一起,开始把新思想和新方法,用20年前就出现过但没引起重视的一个术语“深度学习”(Deep Learning)来描述和包装。深度学习开始登场,渐渐地成为AI和神经网络最热门的研究方向,在有些场合,深度学习甚至成为神经网络的代名词。
尽管2006年以后深度学习就开始引起关注,但震撼性的影响发生在6年后,在前面提到的2012年ImageNet图像识别竞赛上。ImageNet是斯坦福大学华裔女科学家李飞飞和普林斯顿大学华裔教授李凯2007年起合作开发的大型图像识别项目基础上创办的权威竞赛,这项竞赛已经成为图像识别领域当年最高水平者之间的较量。
ImageNet 缔造者李飞飞
欣顿的两位学生组成多伦多大学小组,在2012年的竞赛中采用深度学习赢得了竞赛的图像分类比赛冠军,不仅识别出猴子,而且区出分蜘蛛猴和吼猴,以及各种各样不同品种的猫。
一次比赛的冠军也许并不重要,重要的是欣顿小组用了与其他参赛者完全不同的方法,得到颠复性的结果。竞赛中,他们采用深度学习的识别结果,准确率超过第二名东京大学10%以上,而第二到第四名都采用传统计算机图像识别方法进行分类,他们之间准确率的差别不超过1%。也就是说,采用深度学习,把图像识别的准确率进步一下子提高了一个数量级。2012年10月,在意大利佛罗伦萨的研讨会上,竞赛组织者李飞飞宣布了这一压倒性的结果,在计算机视觉领域产生了极大的震动,并迅速波及到整个AI界和产业界。
深度学习的热潮从此掀起,一波接一波向前迅猛推进,不断进入一个又一个领域并连战连捷,势如破竹,形成今天锐不可挡的AI狂潮。
报纸客服电话:4006677866 报纸客服信箱:pcw-advice@vip.sin*.c*m 友情链接与合作:987349267(QQ) 广告与活动:675009(QQ) 网站联系信箱:cpcw@cpcw*.c*m
Copyright © 2006-2011 电脑报官方网站 版权所有 渝ICP备10009040号