当前位置:首页 > 新闻资讯 > 科技生活 > 新闻
AI传奇 第三回 杰夫·欣顿
  • 2017/3/1 9:33:05
  • 类型:原创
  • 来源:电脑报
  • 报纸编辑:电脑报
  • 作者:
【电脑报在线】正是杰夫·欣顿等科学家在人工神经网络领域锲而不舍的研究与探索,深度学习才会脱颖而出,创造出今天AI的一个个奇迹。

寒冬中的坚持

      杰夫·欣顿博士毕业不久,AI刚好迎来第二次高潮。一直在神经网络领域耕耘的他并没有感到好时光到来,因为那个时代符号学派占了上风,名噪一时的专家系统、智能推理机,都是符号主义的胜利。而到了AI的第二次寒冬,所有的AI项目却都受到重创,神经网络也如此。

      人工神经网络想法非常好,研究成果也大量出现。但随着对人脑研究的深入,人们发现,人脑的确是宇宙中最复杂的精灵之物,模仿人脑的人工神经网络系统,谈何容易。

      一个人类的大脑保守估计有1000亿个神经元。人们常常比喻人脑像一台电脑,实际上每一个神经元都是一台电脑。每一个神经元有无数突触与其他神经元相连,估计突触的数量在100万亿到1000万亿之间。谷歌大脑是最著名的人工神经网络系统,即使在今天,目标也不过是达到大脑某一部分的功能。

      由于人工神经网络的高度复杂性,这一研究方向一度被认为是学术死路。在AI第二次进入低谷时,很多同行开始转去研究别的领域,但是欣顿等人仍然在这里坚守,他因而被视为不可理喻的怪人,说起神经网络,人们都用不屑的眼神看着他。尽管欣顿在人工神经网络领域硕果累累,并在1998年被选为英国皇家学会院士,还获得了很多其他荣誉,但仍不能扭转人们的偏见。很长一段时间里,多伦多大学计算机系私下流行着一句对新生的警告:不要去欣顿的实验室。

      欣顿不为所动,仍然坚持自己的神经网络研究方向。据说他有一种激励自己的特殊方法,每周发泄般大吼一次:我发现大脑是怎样工作的啦!这样的习惯,几十年一直保持下来。

      在神经网络相关学术论文很难得到发表的那段时间,他坚持写了两百多篇研究论文,为后来的突破打下了坚实的基础。科研经费又成为他的大问题。但功夫不负有心人。2004年,欣顿终于从加拿大高等研究所(CIFAR)获得了每年50万美元的经费支持,如果和日本五代机等知名AI项目得到的巨额资金相比,这实在是一笔微薄的经费。但是,名为“神经计算和适应感知”的这一项目,在乐昆和本希奥两位志同道合者的良好合作下,他们将一批一流的计算机、生物学、电子工程、神经科学、物理学和心理学专家团结在一起,共同探索神经网络模拟人脑智能的新方法。

本文出自2017-02-27出版的《电脑报》2017年第08期 A.新闻周刊
(网站编辑:pcw2013)


我来说两句(0人参与讨论)
发表给力评论!看新闻,说两句。
匿名 ctrl+enter快捷提交
读者活动
48小时点击排行
论坛热帖